Академик П.Л. Капица

НАУЧНАЯ ДЕЯТЕЛЬНОСТЬ
ВЕНИАМИНА ФРАНКЛИНА

Доклад на торжественном заседании АН СССР, МГУ им. М.В. Ломоносова,
Советского комитета защиты мира и Всесоюзного общества культурной связи с заграницей,
посвященном 250-летию со дня рождения Франклина.
Актовый зал МГУ, 17 января 1956 г.
См.: Успехи физ. наук. 1956. Т. 58. С. 169-182.


 
У неба он похитил молнию,
У тиранов - скипетр.

Тюрго о Франклине

Франклин родился в Америке, в г. Бостоне, в 1706 г. Он умер, когда ему было 84 года. Его деятельность охватывает весь XVIII в. и тесно связана с проходившим тогда быстрым развитием естественных и общественных наук. Это эпоха просветителей, эпоха, предшествующая периоду коренных общественных переворотов в Европе.

Имя Франклина вошло в историю мировой культуры не только как имя крупнейшего ученого, одного из основателей учения об электричестве, но и как имя крупнейшего прогрессивного государственного и общественного деятеля Америки, принимавшего живейшее участие в борьбе за ее освобождение от колониального положения. Современники единодушно описывают Франклина как исключительно обаятельного человека, всесторонне образованного, с гуманными и широкими взглядами, интересного и остроумного собеседника. Франклин часто путешествовал и много лет прожил за границей, главным образом в Англии и Франции. Здесь он широко общался с передовыми людьми своего времени и к концу жизни стал популярнейшим лицом в Европе.

На своей родине, в Америке, Франклин по сей дань является одним из наиболее почитаемых людей за все время истории США. Разносторонняя деятельность и жизнь Франклина хорошо изучены и известны, им посвящено много трудов.

Основные научные открытия Франклина в области электричества были им сделаны в 50-е годы XVIII в., до работ Гальвани и Вольта, т.е. до эпохи гальванического тока, и относятся к начальному периоду завоевания наукой этой могучей силы природы.

За 200 лет, прошедшие со времени работ Франклина, учение об электричестве настолько продвинулось вперед, что сейчас работы Франклина изучают в средней школе, в тех классах, где только начинают знакомиться с физикой. Всем нам с юности известны основы учения о статическом электричестве, хотя, возможно, некоторые из нас могли позабыть, чтб, собственно, здесь было сделано Франклином. Например, все ли из нас помнят, что наименование положительного и отрицательного полюсов было впервые введено в науку Франклином?

Подробное описание научных работ Франклина навряд ли сейчас интересно, но сама история развития работ Франклина в области электричества, мне думается, не только интересна, но и полезна для современного ученого. Следует это из того, что путь развития науки, т.е. путь познания природы, по которому идет человечество, - единый. В своих исканиях научных истин мы нередко сбиваемся с правильного пути, и тогда теряется время. Поэтому, чем меньше мы будем отклоняться от правильного пути. тем скорее и экономичнее будут развиваться наши познания и завоевание сил природы. Изучая историю науки, мы находим те факторы, которые способствуют быстрому развитию науки. С этой точки зрения история научных работ Франклина представляет исключительный интерес.

Работы Франклина по электричеству были им сделаны за короткий период времени, всего за 7 лет, с 1747 по 1753 г. Впервые он начал заниматься научной работой, когда ему уже был 41 год. К этому времени Франклин уже стал состоятельным человеком. Созданные им в Филадельфии, тогда еще небольшом городе, печатное дело, газета, знаменитый альманах и другие печатные издания пользовались большим успехом. Научной работой Франклин начал заниматься совершенно случайно, после того как ему пришлось присутствовать на популярной лекции с демонстрациями по электричеству. Такие лекции были тогда распространены, так как ряд электрических явлений, как то: отталкивание и притяжение наэлектризованных тел, электрическая искра, неприятные ощущения, вызываемые пропусканием разряда через человека, - были тогда новыми и совершенно необычными и служили прекрасным материалом для популярных научных лекций.

Незадолго до того, как Франклин присутствовал на лекции по электричеству, была изобретена лейденская банка, которая впервые дала метод конденсации электричества в заметном количестве. Возможность производить опыты со значительным запасом электричества сразу сделала демонстрации электрических явлений более яркими.

Франклин очень увлекался опытами по электричеству, и в продолжение семи лет большую часть своего времени он посвятил научной работе. Эти работы в то время, несомненно, стали ведущими в развитии учения об электричестве и получили мировое признание. За этот короткий срок Франклин был признан ведущим ученым своего времени. Большинство крупных научных обществ или академий отметило научные заслуги Франклина, избрав его своим членом, и ряд университетов присвоил ему почетное звание доктора.

Естественно, возникает вопрос: как могло случиться, что Франклин, раньше никогда не занимавшийся физикой, на отлете, в небольшом городе Америки, вдали от центров мировой науки, будучи уже человеком зрелого возраста, смог за несколько лет работы возглавить развитие целой научной дисциплины?

И это произошло в середине XVIII в., когда наука велась людьми на уровне знаний таких ученых, как Ньютон, Гюйгенс, Эйлер. О дилетантизме здесь говорить не приходится. Как же мог Франклин достичь таких результатов, которые остались недоступны профессиональным ученым?

Мне думается, что надо искать объяснение в том, что Франклин первый правильно понял существо электрических явлений и поэтому открыл правильный путь для дальнейших исследований в этой области. Аналогичный резкий сдвиг в развитии целой важнейшей области физики - радиоактивности - произошел на глазах многих из нас.

После того как в 1896 г. Беккерель открыл явление радиоактивности, в продолжение ряда последующих лет накоплялся богатейший опытный материал по изучению физических явлений, связанных с радиоактивными свойствами вещества. Во всем этом разнообразии опытного материала не имелось порядка, поскольку сущность самого явления радиоактивности не была понята. Резерфорд первый нашел, что физические явления, связанные с радиоактивностью, сразу же объясняются, если предположить, что радиоактивность является процессом распада материи. Для того чтобы это увидеть, от Резерфорда не требовалось глубокой эрудиции, но, главное, нужно было его большое воображение, прозорливость и смелость. На таких начальных этапах развития науки точность и пунктуальность, присущие профессиональным ученым, могут скорее мешать выдвижению такого рода смелых чредположений.

В начальной стадии изучения электричества требовалось, чтобы был сделан такой смелый шаг. И Франклин его сделал.

До работ Франклина было уже накоплено большое количество опытного материала, но факты были разрознены, и выдвинутая им гипотеза не только объединяла эти факты в стройную картину, но и указывала правильный путь для дальнейших исследований.

Свою основную гипотезу Франклин изложил в письме к Питеру Коллинзу в 1749 г. Она дает ясную картину процессов, происходящих при электризации тел. Эта картина до сих пор в основном остается правильной. Вот выдержка из этого письма: "Электрическая материя состоит из частиц крайне малых, так как они могут пронизывать обычные вещества, такие плотные, как металл, с такой легкостью и свободой, что не испытывают заметного сопротивления".

В наши дни мы называем эти "крайне малые частицы" электронами. Далее Франклин рассматривал любое тело как губку, насыщенную этими частицами электричества. Электризация тел состоит в том, что тело, имеющее избыток электрических частиц, положительно заряжено; если тело имеет недостаток этих частиц, оно заряжено отрицательно. Количественно Франклин это доказал очень наглядным опытом.

Представим себе, что два человека стоят на восковых подушках, т.е. изоляторах. Один из них трением электризует стеклянную палочку. Тогда, если он касается ею другого человека, они оба становятся наэлектризованными по отношению к земле, что просто доказывается тем, что любой из них, касаясь заземленного предмета, вызывает искру. Если же сразу после электризации стоящие на изоляторах люди коснутся друг друга, то между ними проскочит искра, после этого их наэлектризованность по отношению к земле пропадает. Это доказывается тем, что при прикосновении к заземленному предмету искры не возникнет.

Гипотеза Франклина исходила из материальной природы электричества и просто объясняла эти опыта. Если изолированный человек касается другого изолированного человека стеклянной палочкой, один из них теряет электрическую материю, другой в той же мере ее приобретает. Один из них заряжен положительно, другой - отрицательно. Если они касаются друг друга, то происходит разряд и, поскольку сохраняется постоянное количество электрической материи, прежнее равновесие восстанавливается.

Конечно, Франклин тогда не имел возможности на опыте воспринимать материальный характер электричества и поэтому не имел возможности определить, кто на самом деле получает электрическую материю и, следовательно, заряжен положительно и кто ее теряет, т.е. заряжен отрицательно. Поэтому он принял наугад, что наэлектризованное стекло заряжено положительно, может быть, думая, что шерстяная материя при трении о стекло втирает в него электричество. Только в конце прошлого века, после открытия частиц электричества - электронов, стало известно, что не положительный электрод, как думал Франклин, накапливает электрические частицы, но отрицательный. Чтобы не менять привычных обозначений положительной и отрицательной полярности, электрону приписали отрицательный заряд.

Я приведу еще один опыт Франклина, который тоже представляет крупный научный интерес.

Свойство взаимного отталкивания одноименных заряженных тел Франклин распространил на заряды, находящиеся на металлических проводниках. Он считал, что заряды, отталкиваясь друг от друга, будут стремиться на наружную часть наэлектризованного металлического тела. Он доказал справедливость своего предположения следующим опытом.

Металлический чайник ставился на изолятор и электризовался. Требовалось найти опыт, который доказал бы, что заряд распределяется по наружной поверхности чайника. Для этого внутрь чайника помещалась цепь, которую посредством изолированной ручки можно было постепенно извлекать из чайника. Степень электризации чайника определялась по отталкиванию двух шариков, подвешенных к нему на ниточках. Опыт заключался в том, чтобы за изолированную ручку подымать цепь из чайника и наблюдать, как по мере ее вытягивания степень электризации чайника уменьшается.

Франклин рассуждал так: пока цепь находится внутри чайника, ее поверхность увеличивает внутреннюю поверхность чайника; когда цепь вытягивают наружу, то она увеличивает наружную поверхность чайника. Франклин заключает: если заряд распространяется только по наружной поверхности наэлектризованного проводника, то только при ее увеличении наэлектризованность будет уменьшаться. Это и наблюдается на самом деле, когда производится опыт.

Я привел эти два опыта не только как гениальные по своей простоте, но и как наиболее фундаментальные по своим результатам. Описание всех своих работ Франклин дает в письмах своему другу Коллинзу в Англии.

В этих письмах описывается большое количество различных опытов, которые теперь стали классическими: получение электрического ветра, изучение свойств стекания зарядов с острия и др. В этих же письмах Франклин, с точки зрения своей гипотезы, дает правильное объяснение ряда уже известных электрических явлений, например картины накопления электрических зарядов в лейденской банке, и на этом основании он делает плоский конденсатор. Коллинз докладывал о работах Франклина в Королевском обществе. Потом он издал их отдельной книгой, которая и стала основным научным трудом Франклина. Эта книга выдержала ряд изданий и была переведена на многие языки.

Я не буду описывать других опытов Франклина, лишь упомяну о его опытах, доказывающих электрическую природу молнии. Эти опыты стали знамениты еще при жизни Франклина и принесли ему наибольшую известность. Хотя и до Франклина высказывалась гипотеза, что молния и разряд, получаемый от электричества, созданного трением, - одно и то же явление, хотя и разных масштабов, но опытных доказательств справедливости этой гипотезы не было найдено.

Ясность и правильность понимания Франклином явлений электризации дали ему возможность найти опыт, который впервые убедительно доказывал электрическую природу грозовых разрядов. Идея опыта Франклина заключалась в следующем.

Положим, между грозовой тучей и землей поставлен длинный вертикальный, изолированный от земли металлический стержень. Если грозовая туча имеет электрический заряд, то заряд противоположного знака находится в верхней части стержня. Если на этом верхнем конце стержня сделать острие, то наведенный заряд стечет и стержень зарядится электричеством того же знака, что и туча.

Франклин считал, что присутствие этого заряда можно будет обнаружить по искре, которая возникает, если прикоснуться к проводнику свободным концом заземленной проволоки. Франклин предполагал, - как потом выяснилось, ошибочно, - что для успеха этого опыта стержень надо поставить на возвышенность, чтобы он был ближе к облаку. Так как вблизи его дома такой возвышенности не было, он думал, что ему не удастся сделать этот опыт. Он подробно описал, как его надо делать, и предлагал это выполнить другим. Сам же он решил проделать аналогичный опыт, но несколько другим путем, который не требовал возвышенности.

Для этого опыта вместо металлического стержня он решил использовать бечевку, поднимая ее вверх змеем. Поскольку во время грозы всегда бывает ветер, змей можно запустить, а так как идет и дождь, то веревка, намокая, станет проводящей и может заменить металлический стержень. Чтобы бечевка легче заряжалась, была предусмотрена возможность на верхнем конце бечевки дать стекать наведенным зарядам. Для этого по углам рамки змея Франклин поместил острия. Для того чтобы изолировать бечевку от земли, внизу к ней была привязана шелковая лента, которая была защищена от дождя. К концу бечевки у земли был подвешен металлический ключ, из которого Франклин во время грозы и извлекал искру. Таким путем в присутствии своих друзей и знакомых он доказал электрическую природу грозового разряда. Опыт со змеем сделан Франклином 12 апреля 1753 г., тогда же он впервые нашел, что грозовые облака, как правило, бывают заряжены отрицательно.

Французский ученый Далибар построил в Марли, точно по описанию Франклина, . изолированный стержень, и 10 мая 1752 г. во время грозы на опыте в первый раз от него были получены электрические искры, и этим успешно, несколько раньше самого Франклина, но по его методу, была доказана электрическая природа грозы.

Технические детали как этих опытов Франклина, так и других очень интересны, так как показывают его большую экспериментальную изобретательность.

При знакомстве с историей развития работ Франклина вызывает удивление та быстрота, с которой взгляды Франклина входили в науку. Несмотря на оппозицию ряда видных ученых, как, например, аббата Нолле или Вильсона, идеи Франклина в очень короткий срок прочно внедрились в науку. Конечно, научная истина всегда пробьет себе путь в жизнь, но сделать этот путь скорым и более прямым зависит от людей, а не от истины. В этом отношении деятельность Франклина и сейчас может быть примером того, как, говоря современным языком, внедрять свои научные достижения.

Всякую свою работу Франклин стремился сразу же сделать достоянием возможно более широкого круга людей. У себя в Филадельфии из местных граждан он организовал философское общество, там он проводил демонстрации, читал лекции. Франклин часто бывал за границей, где он широко общался с научной общественностью. Франклин вел интенсивную научную переписку с рядом ведущих ученых Франции, Италии и Англии, даже и тогда, когда Америка воевала с Англией. Он самостоятельно изучил французский, итальянский и испанский языки, он также знал латынь.

Особенно ярко его способность бороться за новые идеи обнаружилась, когда ему пришлось внедрять в жизнь громоотвод. Но об этом речь впереди. Сейчас вернемся к вопросу о дальнейшем развитии работ Франклина по электричеству.

В связи с идеями Франклина ученые многих стран были заняты экспериментами по изучению природы электричества. У нас в Петербурге Ломоносов и Рихман построили стержни для изучения атмосферного электричества и назвали их "громовой машиной".

К сожалению, работы Ломоносова не только в области электричества, но, главное, в области химии, где он впервые открыл закон сохранения материи, хотя и имели фундаментальное значение, но тогда не смогли оказать такого влияния на развитие мировой науки, как они, несомненно, того заслуживали.

Мне думается, что основная причина здесь в том, что социальные условия, в которых жил и творил Ломоносов, не давали ему возможности общаться с учеными других стран и бывать за границей. Изолированность работы Ломоносова и Рихмана, несомненно, также мешала влиянию русской науки на мировую.

Особенно печальна судьба Рихмана. В своих работах Рихман правильно указывал, что дальнейшее развитие экспериментальных работ Франклина должно идти по пути нахождения количественного описания явлений электризации. Изыскивая метод количественного измерения заряда наэлектризованного стержня, "громовой машины", во время грозы, Рихман, чтобы произвести количественный отсчет, неосторожно наклонился и приблизился чересчур близко к проводнику. Он был убит наповал электрическим разрядом в голову. Это произошло в 1753 г.

После работ Франклина наиболее крупным этапом в развитии науки об электричестве был переход к количественному описанию электрических явлений. Это было сделано Кулоном и только в 1785 г. Всем хорошо известно, как он на своих крутильных весах открыл фундаментальный закон взаимодействия электрических зарядов. Кулон нашел, что сила взаимодействия обратно пропорциональна квадрату расстояния между зарядами.

Последовавшие затем теоретические работы Гаусса, Лапласа, Пуассона развили этот основной закон природы в ту стройную теорию электростатического поля, которой мы так широко пользуемся в наши дни. Но в истории развития учения об электрическом поле имеется одна сравнительно мало известная страница, которая имеет отношение к фундаментальным работам Франклина и о которой интересно напомнить.

Почти 100 лет спустя после работ Кулона, в 1877 г., Максвелл напечатал статью о неопубликованных работах Генри Кавендиша в области электричества. Максвеллу как первому директору Кавендишской лаборатории в Кембридже, построенной на средства потомков Кавендиша, был предоставлен архив Генри Кавендиша. В этом архиве он обнаружил совершенно готовую к публикации рукопись работы Кавендиша, экспериментально доказывающую тот же закон квадрата расстояния, [что и] открытый Кулоном. Экспериментальные доказательства в опыте Кавендиша существенно отличались от опыта Кулона, метод был более прост и доказательства более точны, чем у Кулона. Даты на рукописи Кавендиша не было, но Максвелл отнес ее, во всяком случае, к годам не позднее 1775, следовательно, по крайней мерена 10 лет раньше открытия закона Кулоном,

В своих работах Кавендиш исходил из того, что можно теоретически показать, что на полом металлическом проводнике только тогда весь электрический заряд может распределиться на наружной поверхности, когда эти заряды отталкиваются друг от друга по закону квадрата расстояния. Но доказательство распространения заряда по наружной поверхности проводника уже было сделано Франклином опытом электризованого чайника с цепью, о котором я говорил, надо было только найти способ сделать это доказательство более точным.

Поэтому Кавендиш воспроизвел этот опыт более совершенным образом. Вместо чайника он взял полую металлическую сферу, а вместо цепи поместил внутри, концентрически ей, вторую металлическую сферу. Обе сферы могли быть или изолированы, или замкнуты, в зависимости от того, как то было нужно. Кавендиш выбрал концентрические сферы, потому что эта форма тел давала возможность количественно обрабатывать полученный результат опыта. Опыт Кавендиша заключался в доказательстве того, что заряд, сообщенный наружной сфере, распределяется только по ней и не переходит на внутреннюю сферу.

Максвелл организовал в Кембридже повторение опыта Кавендиша, но с более совершенным измерительным прибором, и показал, что закон второй степени Кулона справедлив с точностью почти до одной миллионной, в то время как методом крутильных весов Кулона этот закон можно было проверить с точностью немного более одного процента.

Тут возникает вопрос: почему в продолжение 100 лет такие первоклассные ученые, как Гаусс, Пуассон, Лаплас, и другие создатели теории электрического поля не заметили, что простой опыт Франклина с чайником мог уже служить для опытного доказательства справедливости одного из самых основных законов электростатического поля - закона Кулона?

Как могло случиться, что работа Кавендиша оставалась в продолжение 100 лет никому не известной? Максвелл в своей статье также указывает, что в этой же готовой для печати работе Кавендиша, кроме закона Кулона, был еще сформулирован и грубо проверен закон Ома. И это было сделано за 70 лет до того, как этот закон был открыт самим Омом.

Естественно задать вопрос: как могло произойти, что такой крупный ученый, как Кавендиш, которого многие называли "Ньютоном современной химии", мог пренебречь опубликованием этой работы по электричеству, которую он, конечно, не мог не считать фундаментальной?

Навряд ли история когда-либо найдет ответ на этот вопрос, но самое вероятное, что Кавендиш просто позабыл направить ее в печать.

Это объяснение сперва кажется невероятным, так как, казалось бы, его товарищи, ученые, должны были знать об этих работах и напомнить ему о них. Но здесь вскрывается особенность характера Кавендиша - у него не было ни друзей, ни товарищей, он вообще избегал людей. Очень богатый человек, брат герцога Девонширского, он жил исключительно замкнутой жизнью, только занимаясь своей наукой. Даже прислуге его дворца было запрещено в его покоях попадаться ему на глаза. Ему подавали еду на стол до того, как он входил в столовую. Вот благодаря этой оторванности от людей научные работы Кавендиша, плоды его крупнейших научных достижений, сделанных в Англии, не оказали влияния на развитие мировой науки.

Уже много позже французские и немецкие ученые самостоятельно открыли эти законы природы. Они передали свои знания людям, и по справедливости эти фундаментальные законы природы носят имена Кулона и Ома.

Кроме чисто научных работ, у Франклина есть еще одно общепризнанное достижение; это его изобретение - громоотвод. В истории внедрения в жизнь этого изобретения есть тоже много поучительного. Это длинная история, ей посвящены многие исследовательские работы. Поэтому я могу только совсем кратко рассказать, как Франклин изобрел и внедрил громоотвод.

Я уже говорил о том, что Франклин экспериментально доказал, что молния есть не что иное, как электрическая искра, происходящая между тучами и землей, когда они имеют противоположные электрические заряды. После того как была раскрыта сущность грозового разряда, естественно, встал вопрос, как можно рационально бороться с разрушениями и пожарами, причиняемыми молнией. Стало ясно, что когда молния ударяет в здание, корабль или любой другой возвышающийся объект, то вред причиняется тем, что мощный электрический ток, проходя по плохо проводящей среде, производит разрушения и воспламенения. Поэтому, если при ударе молнии в здание дать возможность электрическому разряду пройти в такой хорошо проводящей среде, как металл, разрушений не будет. Становилось понятным, почему здания с металлической крышей и сточными трубами были менее подвержены действиям грозовых разрядов. Например, храм Соломона в Иерусалиме ни разу за тысячу лет не подвергался разрушениям от грозы, так как он был покрыт полированными металлическими пластинами.

Естественно, что после работ Франклина, вскрывающих природу грозовых разрядов, сразу у ряда лиц стали появляться идеи о возможности защиты от молнии отводом электрического заряда через хорошо проводящие металлические стержни.

Вполне возможно, что скромный священник по имени Прокоп Дивиш в небольшом городе в Чехии в 1754 г. самостоятельно, исходя из понимания процессов электрических разрядов и используя в качестве проводника для отвода тока заземленную цепь, установил над крышей своего дома устройство, близко напоминающее громоотвод Франклина. Затея эта кончилась печально, так как население городка, движимое суеверным страхом, сорвало и уничтожило это устройство.

Несомненно, Франклин с его острым практическим умом раньше всех других увидел возможность найти защиту от молнии путем отвода тока. Но гораздо труднее для него было найти наиболее рациональную форму громоотвода и заставить общественное мнение признать его как действенное средство борьбы с разрушениями, вызываемыми грозой, С этой задачей Франклин блестяще справился, и его деятельность в этом направлении до сих пор может служить примером, как нужно проводить новые технические идеи в жизнь.

Франклин не только не брал патента на свой громоотвод, но дал возможность им пользоваться безвозмездно всякому, кто этого хотел. Кроме того, он повел большую и искусную пропагандистскую работу для внедрения его в жизнь. За неимением времени нельзя рассказать полностью историю внедрения громоотвода, поэтому я остановлюсь на наиболее ярких моментах.

Вполне возможно, что ни одно изобретение не вызвало такую бурю разнообразных возражений, которую вызвал 200 лет назад тот небольшой металлический стержень, который в наши дни венчает почти каждое сооружение и является стандартным элементом его конструкции.

200 лет назад возражения против громоотвода были самые разнообразные и возникали на самой различной почве, были и такие аргументы: "Молния в руках провидения - орудие возмездия, поэтому грех этому противиться". Другой не менее убедительный аргумент был: "Грозовые бури происходят тогда, когда злые духи, демоны, выходят из повиновения всевышнему". Поэтому единственный правильный способ борьбы - это колокольный звон, который отгоняет злых духов. Вот почему долго считалось необходимым звонить в колокола во время грозы. Так как естественно, что церковные колокольни наиболее уязвимы при ударе молнии, то звонить во время грозы было небезопасным делом. Даже после изобретения громоотвода их долго не ставили на церкви и продолжали звонить в колокола. В Германии в конце XVIII в. за 33 года было убито 120 звонарей и разрушено 400 колоколен.

Но главная борьба за громоотвод у Франклина сосредоточивалась не около суеверно-религиозных возражений, которыми были охвачены менее культурные слои населения. Борьба была с самой верхушкой тогдашнего общества. Против громоотвода возникли как научные возражения, так и политические.

Когда Франклин давал описание действия громоотвода, кроме его очевидной функции дать беспрепятственный путь электрическому току по металлическому стержню в землю, он еще указал на возможность существования и другого процесса.

Франклин считал, что если над сооружением находится грозовая туча и если громоотвод снабжен острием, то с него может происходить медленное отекание электрического заряда. Это явление мы теперь называем тихим разрядом. Оно и будет нейтрализовать заряд облака и его разряжать. Поэтому Франклин допускал, что громоотвод не только защищает здание, но вообще может предотвратить грозовые разряды. Научные противники Франклина считали, со своей стороны, что стекание заряда с острия не только не будет нейтрализовать заряд тучи, но будет создавать более благоприятные условия для возникновения молний. Поэтому громоотвод скорее вреден, так как дает возможность возникновения грозовых разрядов, которых без него вообще не было бы.

Ученые, стоявшие на этой точке зрения, считали в особенности вредным и опасным для здания его соседство с другим, снабженным громоотводом.

Интерес общественного мнения к этим вопросам был очень велик, и это хорошо иллюстрируется известным случаем: когда в Сент-Омере, во Франции, господин де Виссери поставил громоотвод на своем доме, его соседи были этим так испуганы, что подали на него в суд. Процесс произвел много шума и длился несколько лет в период между 1780 и 1784 гг. Интересно, что на стороне защиты громоотвода выступал молодой адвокат Максимилиан Робеспьер и это громкое дело положило начало его известности. Любопытно также, что одним из экспертов со стороны истца выступал Марат, который считал громоотвод опасной затеей и был против его установки. После долгой борьбы и апелляций де Виссери выиграл процесс.

Интересна тактика Франклина во всей этой борьбе за громоотвод. Он обычно не выступал публично, но путем бесед и путем своей громадной переписки он непрерывно воздействовал на ведущих ученых и общественных деятелей. Такой пропагандой он создавал себе мощную армию из передовых людей того времени, которая боролась за проведение в жизнь его детища - громоотвода.

В Англии борьба против громоотвода приобрела резко политический характер. Английский ученый Вильсон пытался доказать, что избежать вредного действия громоотвода можно, если его конец сделать тупым и этим помешать отеканию заряда. Так как время этого спора совпало с эпохой освобождения Америки от колониального положения и Франклин стал крупной политической фигурой молодой Америки и одним из активнейших борцов за свободу, то всякий гражданин Англии, снабжавший свой громоотвод острием, а не тупым концом, считался политически неблагонадежным.

Король Англии Георг III требовал от Королевского общества, английской академии наук, чтобы оно отказалось от своего решения в пользу острия на франклиновском громоотводе. На это требование короля президент Королевского общества сэр Джон Прингл, лейб-медик короля и личный друг Франклина, дал следующий известный ответ: "И по своему долгу, и по своим склонностям я по мере сил всегда буду исполнять желания его величества, но я не в состоянии ни изменить законов природы, ни изменить действия их сил". За эти слова его уволили с должности королевского врача и сняли с президентства Королевского общества.

В процессе борьбы по вопросу о громоотводе были использованы все методы, клевета, инсинуации и лично против Франклина, и против его друзей. Франклин сохранял большое спокойствие, не обращая внимания на личные выпады, и неизменно говорил, что в вопросах науки правда выявляется только опытом.

Действительно, опыт и решил этот спор, но много десятков лет спустя, когда учение о грозовых разрядах и об электрическом поле достигло современного уровня. Теперь мы знаем, что весь этот спор не имел никакого основания, так как для обычного громоотвода не имеет значения, чем он завершается, острием или тупым концом. На небольшом расстоянии от земли геометрическая форма конца громоотвода не может заметно влиять на распределение электрического поля над землей.

Но один из ведущих специалистов по грозовым разрядам доктор Шонланд указывает, что все же процесс нейтрализации заряда облака путем тихого разряда, предсказанный Франклином, возможно осуществить, но только тогда, когда острие громоотвода находится на таком большом расстоянии от земли, что оно сравнимо с высотой тучи. Это имеет место для громоотводов, помещенных на самых высоких американских небоскребах, тогда действительно удается наблюдать с острия стержня тихий разряд, не переходящий в молнию. Шонланд добавляет, что это, несомненно, дало бы Франклину чувство справедливого удовлетворения, если бы он мог это знать.

Сейчас громоотвод - неотъемлемая часть всех наших сооружений, и, конечно, невозможно подсчитать то количество зданий, сооружений, кораблей, которые он уберег он разрушения или предохранил от пожара. Заслуга эта справедливо приписывается инициативе Франклина.

Только кратко скажу о деятельности Франклина в других областях науки, так как, кроме описанных знаменитых достижений, у него есть еще достижения и в других областях.

Франклин занимался геофизикой, дал карту течения Гольфстрима, изобрел музыкальный инструмент с трущимися стеклянными шарами, экономичную печку, до сих пор распространенную в Америке и Франции, уличные фонари, двойные очки для старческой дальнозоркости и многое другое. Кроме того, благодаря своему общительному характеру и живому уму Франклин много консультировал и способствовал развитию науки. Конечно, сведения о большинстве этих консультаций канули в вечность, но некоторые дошли до нас.

Так, например, Людовик XVI просил Франклина быть членом комиссии по вопросу о ценности способа лечения, предложенного доктором Месмером, который использовал так называемый "животный магнетизм". Интересно, что в той же комиссии участвовал небезызвестный доктор Гильотен, изобретатель гильотины. Франклин отрицал существование животного магнетизма, но считал, что это не вредный способ лечения, так как он развлекает состоятельных людей, не принося им вреда, что не всегда можно сказать о других необоснованных лекарственных методах лечения.

Очень одобрительно Франклин отнесся к полетам братьев Монгольфье. Нужно также отметить и ту область деятельности Франклина, которая была связана с теми возможностями для развития мировой науки, которыми Франклин располагал как крупный государственный деятель того времени.

Франклин считал, что научные достижения есть достояние всего человечества и забота о развитии мировой науки должна стоять вне политических и военных противоречий между народами. Так, во времена войны с Англией, когда знаменитый исследователь капитан Кук возвращался из своего плавания, Франклин дал указания всем американским кораблям и корсарам отнестись с уважением к капитану Куку, где бы они его ни встретили во время его путешествия. Для наших дней также представляет интерес, что Франклин, заседая в конгрессе, убедил не распространять на научное оборудование эмбарго, наложенное на все товары английского происхождения.

Изучая биографию Франклина, все больше и больше понимаешь, почему существует всеобщее уважение и преклонение перед этим большим человеком, которого народ Америки дал человечеству.

В эпоху быстрого роста естественных наук каждая страна дала своего великого родоначальника науки - у нас это был Ломоносов, в Англии - Ньютон, в Италии - Галилей, в Голландии - Гюйгенс, во Франции - Декарт, в Германии - Лейбниц, в Америке - Франклин. Достижения этих больших ученых являются гордостью всего человечества.


Воспроизведено по изданию:
П.Л. Капица Научные труды. Наука и современное общество // Ред.-сост. П.Е. Рубинин / Изд. "Наука", М., 1998 г., стр. 197-205.


Страница П.Л. Капицы
VIVOS VOCO!

VIVOS VOCO! - ЗОВУ ЖИВЫХ!
Январь 2001