Исаак Ньютон. Посмертная маска Эмблема Издательства АН СССР по эскизу С.И. Вавилова

С. И. ВАВИЛОВ

ГЛАЗ И СОЛНЦЕ

(О свете, Солнце и зрении)
 

Глава 1

СВЕТ

Для чего толь многие учинены опыты в физике и в химии? Для чего толь великих мужей были труды и жизни опасные испытания? Для того ли только, чтобы, собрав великое множество разных вещей и материй в беспорядочную кучу, глядеть и удивляться их множеству, не размышляя о их расположении и приведении в порядок?

Ломоносов

От Земли до Солнца около 150 миллионов километров; пролететь это расстояние - то же, что 4000 раз объехать кругом Земли. Что же такое свет, непрерывно приносящий глазу из такой дали вести о Солнце, и, прежде всего, как отличить свет от прочего, нас окружающего, каковы его признаки? До XVII в. отвечали так: свет - это то, что видит глаз, причина зрительных ощущений. Признак явно неудовлетворительный. Стоит в полной темноте слегка нажать пальцем около носа на глазное яблоко, и появятся причудливые светлые круги. Если и здесь причину зрительного ощущения назвать светом, то придется вернуться к воззрению о "зрительных лучах", о котором говорилось на предыдущих страницах. Не всякая причина, вызывающая зрительное чувство, может быть названа светом. С другой стороны, следует поставить и такой вопрос: всякий ли свет видим? Несомненно, и это не так; существует бесконечное разнообразие явлений, которые нам придется назвать световыми и которые невидимы. В этом мы скоро убедимся.

Итак, в самом начале учения о свете мы натолкнулись на серьезное затруднение: мы еще не знаем, что составляет предмет этого учения. Чтобы выйти из этого тупика, рассмотрим сначала несколько ближе наши зрительные впечатления.

У зрительных образов два основных качества - яркость и цвет, качества для всех зрячих очевидные (в буквальном смысле этого слова) и не требующие дальнейших пояснений *. Но и яркость и цвет очень относительны и субъективны. Луна днем неотличима от облака, ночью она возводится в ранг заместителя Солнца, "второго ока Амона-Ра". Звезды, невидимые днем, на фоне безлунного осеннего ночного неба кажутся необычайно яркими.

* При более внимательном наблюдении обнаруживается и третье качество, называемое насыщенностью. Мы видим, например, рядом две одинаково яркие поверхности, обе красные, но утверждаем, что цвет одной более чистый, насыщенный, другой - белесоватый. как бы разбавленный белым цветом. Примесь "белого" и служит мерой ненасыщенности.
Второй признак зрительных ощущений - цвет - не менее обманчив. Мы различаем черный, белый и промежуточные серые цвета. От них кажутся нам принципиально отличными всевозможные радужные цветовые окраски. В действительности такое отличие в свою очередь в значительной мере субъективно и относительно. Чтобы в этом убедиться, можно произвести такой несложный опыт. Половина белого картонного диска, надетого на деревянную ось, как волчок, заклеивается черным бархатом или просто покрывается хорошей матовой черной краской. На второй половине диска концентрически наклеиваются или закрашиваются черные круговые полоски, как показано на фиг. 5 (диск Бенгэма). Если такой диск, освещенный ярким белым светом, например солнечным, заставить вращаться (запустив его, как волчок), то вместо ожидаемых серых концентрических окружностей на диске при некоторой скорости появляются цветные круги, правда, мало насыщенные и темные. Из смешения черного и белого возникают, таким образом, при некоторых условиях цветные образы.
 
Фиг. 5. Диск Бенгэма

Предлагаем способным на то читателям проверить, будут ли возникать цветовые ощущения от анимированного на экране изображения диска Бенгэма. Пришлите, если получится! - V.V.

Мы приходим к неутешительному выводу, что при определении понятия света нельзя опираться просто на зрительные ощущения. Именно поэтому в течение более чем двух тысяч лет существования науки о свете ясными в ней были только геометрические свойства лучей. Все остальное, исходившее из субъективных зрительных впечатлений, пребывало веками и тысячелетиями загадочным, расплывчатым и неопределенным. Оптика была выведена из этого тупика только в XVII в. Исааком Ньютоном, сумевшим, наконец, перевести субъективные ощущения яркости и цвета на объективный язык меры, числа и физического закона.
 

Исаак Ньютон (1642-1727)

(Рисунок с натуры Штапеля)

В 1665 г. Ньютон начал производить опыты над солнечным светом. В этих опытах через круглое отверстие в ставне окна на стеклянную призму падал пучок солнечного света. Пучок преломлялся в призме, и на экране отбрасывалось удлиненное изображение с радужным чередованием цветов. Появление такой радуги - спектра - при прохождении света через призму было известно давно до Ньютона и объяснялось тем, что стекло как-то влияет на белый свет, изменяя его окраску. Ньютон заключил из своих опытов, что это неверно. Белый свет (по Ньютону) - сложная механическая смесь бесчисленного разнообразия лучей, преломляющихся в стекле в разной степени. Призма не изменяет белого света, а разлагает его на простые составные части; смешав которые можно снова восстановить первоначальную белую окраску (фиг. 6).

Фиг. 6. Изображение установки для разложения призмой в темной камере Кунсткамеры
Петербургской академии наук в первой половине XVIII в. (По рисунку академика Крафта)

Если выделить простой луч, например красный, из радужного веера призмы и пустить на вторую призму, то нового разложения не произойдет, следовательно, при первом разложении в призме действительно выделено что-то постоянное. Цветность этого постоянного, простого цвета сама по себе, однако, снова, ничего не говорит о природе света, она по-прежнему субъективна и относительна. Смешав, например, простой красный цвет с зеленым, получим желтый, похожий на один из простых лучей солнечного спектра; смешав зеленый с фиолетовым, получим синий и т. д. Глаз при этом не в состоянии отличить сложного цвета от простого, для этого нужна призма или вообще спектральный прибор, пространственно разлагающий свет на простые цвета.

Именно это пространственное разделение простых цветов, а не их различная цветность, и дало Ньютону в руки первый объективный и количественный признак света, отвечающий его субъективной цветности. Пространственное разделение простых цветов получается, как показал Ньютон, вследствие их различной преломляемости в призме. Преломляемость можно связать с некоторым вполне определенным числом, показателем преломления. Таким образом, наконец, Ньютону удалось вывести учение о цвете из неопределенности и путаницы субъективных впечатлений на прямую и прочную математическую дорогу.

После Ньютона дальнейшее изучение преломления света в разных телах обнаружило, что преломление сильно зависит от вещества, пз которого сделана призма. В обыкновенных стеклянных и кварцевых призмах синие лучи преломляются больше красных, как в радуге, но если приготовить очень тонкую призму из твердых красок (например, фуксина), то можно получить спектры совершенно необычного вида, в которых красные лучи преломляются больше синих. Таким образом, показатель преломления оказался сложным признаком, зависящим одновременно от качества света и от качества вещества.

Но тот же Ньютон открыл другое поразительное свойство простых лучей, которое позволяет определять их количественно совершенно независимо от природы вещества. Если положить очковое стекло с очень небольшой выпуклостью на стеклянную пластинку, то при освещении белым светом вокруг точки прикосновения линзы к стеклу появляется ряд концентрических радужных колец. Вместо освещения белым светом Ньютон попробовал осветить линзу со стеклом простыми лучами, полученными от разложения солнечного света призмой. Тогда обнаружилась еще более удивительная картина. Если освещение производится, положим, красным цветом, то вокруг точки прикосновения линзы к стеклу появляются многочисленные, правильные, чередующиеся, концентрические красные и черные кольца (фиг. 7). Чем дальше от центрального темного пятна, тем теснее примыкают кольца друг к другу. Измерив радиусы темных колец, Ньютон нашел, что они относятся друг к другу, как корни квадратные из целых четных чисел, т.е. как корни из 2, 4, 6, 8.
 

Фиг. 7. Кольца Ньютона

Если убрать нижнюю стеклянную пластинку и поставить линзу на поверхность, не отражающую света, кольца исчезают. Необходимым условием появления колец, стало быть, как выяснил Ньютон, служит тонкий зазор (фиг. 8) между линзой и стеклом. Нетрудно доказать геометрически, что толщины зазора, соответствующие местам светлых и темных колец, относятся, как последовательные целые числа.

Фиг. 8. Образование колец Ньютона

Наименьший зазор соответствует первому кольцу, остальные будут целыми, кратными этой длины. Если освещать линзу и стекло разными простыми цветами, ширина колец будет меняться, для красных лучей кольца самые широкие, для фиолетовых самые узкие. Каждому простому цвету соответствует своя ширина первого зазора. Какие бы линзы мы ни брали, из какого угодно материала, эта ширина остается постоянной для одного и того же цвета. Она меняется только в том случае, если зазор вместо воздуха наполнить какой-нибудь жидкостью. При этом ширина колец будет зависеть от показателя преломления жидкости.

Описанные несложные опыты Ньютона с линзой, которые очень нетрудно повторить (они проще даже опытов с призмой), по своим результатам совершенно удивительны. В самом деле, прежде всего они обнаруживают перед нами в световом потоке наличие какой-то правильной периодичности. Не менее поразительно затем, что, в то время как вся поверхность линзы равномерно освещается падающими лучами, в отраженном и в проходящем свете мы видим черные, т. е. не освещенные, кольца.

К объяснению этих явлений мы вернемся позднее. Сейчас важно установить, что каждый простой цвет на основании опыта с ньютоновыми кольцами можно связать с шириной зазора между линзой и стеклом, отвечающего первому темному кольцу. Вместо показателя преломления простой цвет количественно можно определить, следовательно, шириной этого первого зазора (см. фиг. 8). Эту ширину мы будем пока условно называть длиной волны, обозначая греческой буквой l. Длины волн видимого света, как показал впервые Ньютон, чрезвычайно малы, их выражают обычно в особых единицах - миллимикронах (mm); миллимикрон равен миллионной доле миллиметра. Ньютон измерил, например, что цвету, лежащему на границе зеленой и синей частей солнечного света спектра, соответствует l=492 mm. Крайний красный цвет имеет длину волны приблизительно в 700 mm, крайний фиолетовый - в 400 mm.

Полезно вдуматься в глубочайшее значение опытов Ньютона. Прихотливая, субъективная область цветовых явлений, в течение тысячелетий ускользавшая от упорядочивающегося стремления ученых, вдруг обнаружила свою количественную сущность и отныне стала вполне подчиненной точному научному анализу.

В то время как Ньютон занимался призматическими цветами и кольцами, в 1675 г. астроном Рёмер из астрономических наблюдений впервые определил скорость света и нашел величину, приблизительно равную (с современными поправками) 300 000 км в секунду. На преодоление пути от Солнца до Земли свету требуется около 8 минут. Оптики древности, основываясь на воззрении о зрительных лучах и считая, что свет идет от глаз к светилу, заключали, что скорость света должна быть необычайно большой. Можно сколь угодно быстро открыть глаза, и мы тотчас же увидим самую удаленную звезду. 300 000 км в секунду - черепашья скорость по сравнению с этой мнимой скоростью зрительных лучей. Если скорость зрительных лучей такова, то, открыв глаза, мы увидели бы Солнце только через 8 минут.

После Рёмера скорость света измерялась много раз различными способами, астрономическими и земными. В настоящее время она известна с очень большой точностью. Для пространства, в котором нет вещества, она составляет 299 776 км в секунду. При этом за первые пять цифр можно поручиться полностью, и только последняя, шестая цифра не достоверна. Важно отметить, что в пустом пространстве скорость света не зависит от длины волны; она одинакова как для красных, так и для синих лучей. Это доказывается с громадной точностью тем, что при затмении удаленных звезд, например в случае захода одной из двойных звезд в тень другой, не происходит никакого заметного изменения цвета звезды. Если бы скорость различных простых цветов была хотя бы ничтожно разной, то при таком затмении необходимо происходила бы резкая перемена цвета звезды.

При распространении света в веществе, например в воде или в стекле, скорость его, наоборот, зависит от длины волны; в этом как раз состоит причина разложения света призмой в спектр. Наблюдая на небе радугу, мы воочию убеждаемся, что скорость распространения лучей разной цветности в водяных каплях разная. Определить эту скорость можно, если разделить скорость света в пустом пространстве на показатель преломления. Самый показатель преломления равен отношению скорости света в пустом пространстве к скорости света данной цветности в веществе.

Если скорость света разделить на длину волны, то мы узнаем число перемен, испытываемых световым лучом в секунду, т.е. так называемую частоту света. Обозначим частоту буквой n, скорость света с, длину волны l. Тогда

n = c / l.

Частота видимого света колоссальна: например, для желтого света с длиной волны в 600 mm она равна полумиллиону миллиардов раз в секунду!

Отметим одно очень важное обстоятельство. Как мы говорили, скорость света обратно пропорциональна показателю преломления среды. С другой стороны, длина волны l, как уже упоминалось при описании опытов Ньютона, тоже зависит от среды, в которой свет распространяется; ньютоновы кольца сжимаются, если воздух в зазоре между линзой и стеклом заменить водой. Длина волны, так же как и скорость, обратно пропорциональна показателю преломления среды. Следовательно, частное от деления скорости на длину волны света, т. е. частота n, как видно из написанной формулы, не зависит от вещества. Стало быть, это очень важная количественная характеристика самого света, именно его свойства, отвечающего цветности.

Однако свет еще не полностью определен его скоростью и частотой. Из субъективных впечатлений мы знаем, что у света в очень широких пределах может меняться его яркость. Достаточно сопоставить мерцание светлячка и прямой свет Солнца, чтобы понять, каких огромных размеров могут достигать различия яркости.

Каков же физический смысл яркости света? На это в науке по-настоящему сумели ответить только после того, как выяснилось понятие энергии. Несомненно, что свет всегда несет с собою энергию, которая проявляется в действиях света, нагревании, в химических изменениях и т. д. Вообще узнать о наличии света мы можем только по его действиям, т. е. вследствие того, что он несет с собою энергию. Ощущение яркости и связано тесным образом с энергией световых лучей. Яркость простого "монохроматического" (одноцветного) луча тем больше, чем больше переносимая светом энергия.

Впрочем глаз - очень плохой судья в вопросе об энергии света. В ночных условиях даже сияние светлячка кажется ослепительным, в дневных - глаз выдерживает сияние прямого света Солнца. С другой стороны, если сравнивать разноцветные лучи, то, например, красный луч с большей энергией будет казаться менее ярким, чем зеленый с энергией значительно меньшей. Следовательно, понятия энергии и яркости света взаимно связаны, но в то же время глубоко различны. Ввиду такой неопределенности для измерения энергии света оптик прибегает в наше время к объективным физическим приемам измерения энергии.

Подведем некоторые итоги. Освободившись от произвола и сложности субъективных световых ощущений, мы можем теперь, на основании изложенных опытов и измерений, утверждать, что свет - это носитель энергии, распространяющийся в межзвездном пространстве со скоростью около 300 000 км в секунду и обладающий периодическими свойствами. Попробуем все, что подходит под это определение, независимо от того, вызывает ли оно зрительные впечатления или нет, считать светом. Впоследствии мы увидим, что в такое определение придется вносить добавления и оговорки. Временно, однако, остановимся на нем.

Действительно, начиная с первых лет XIX в. физикам пришлось включать в область оптики все новые и новые широкие области "невидимых лучей", во множестве которых совершенно поблекла область видимого спектра. Ньютоновский солнечный спектр уходит обоими своими концами, красным и синим, в темноту. Кроется что-нибудь в этой тьме или нет? Глаз там практически ничего не видит.

В 1800 г. Гершель произвел очень простой опыт. Он поместил в темноту за красным краем солнечного спектра термометр с зачерненным концом. Оказалось, что термометр очень заметно нагревается, т. е. в этой области есть лучи, не видимые глазом, но вызывающие нагревание. Эти лучи были названы инфракрасными; удалось измерить длины их волн, доказать, что они распространяются с обычной световой скоростью и, следовательно, во всех отношениях соответствуют физическому определению понятия света. Инфракрасные лучи простираются очень далеко. В настоящее время удалось обнаружить лучи с длиной волны примерно в 0,3 мм. Они идут, следовательно, начиная от видимой красной границы в 750 mm, до (по крайней мере) 300000 mm. Но и здесь нет предела спектру. Те электрические волны, которые излучаются радиостанциями, также распространяются со скоростью 300000 км в секунду и обладают периодичностью; стало быть, и они должны рассматриваться как световые волны. Такие искусственные электрические волны могут быть получены с самыми различными длинами - от десятков километров до долей миллиметра.

Итак, от красной границы спектра можно непрерывно идти до практической бесконечности радиотелеграфных волн. Что делается, с другой стороны, за фиолетовой границей? Здесь, по крайней мере от обычных источников света, термометр заметно не нагревается, но если поместить туда фотографическую пластинку, то она при проявлении потемнеет. Так обнаруживаются невидимые ультрафиолетовые лучи. Можно обнаружить их и другими способами. Под действием этих лучей многие тела начинают светиться видимым светом (люминесценция), становятся электропроводными или испускают электроны (фотоэлектричество). Область ультрафиолетовых лучей обычно считают от видимой фиолетовой границы (довольно, впрочем, неопределенной - около 400 mm) далеко в область коротких волн, по крайней мере до 10 mm.

На этом, впрочем, спектр не кончается; далее следуют лучи, открытые в конце прошлого века Рентгеном и обладающие, как мы теперь знаем, всеми свойствами световых лучей. Они, так же как и ультрафиолетовые лучи, действуют на фотографическую пластинку, вызывают видимую люминесценцию и производят электрические действия. К лучам Рентгена (в соответствии с практическими методами получения) относят волны примерно от 10 до 0,1 mm. Но и это еще не конец светового спектра. За лучами Рентгена следуют лучи с волнами еще более короткими, так называемые гамма-лучи, испускаемые радием и другими радиоактивными веществами. Нет оснований указать какую-либо границу гамма-лучей. Известны гамма-лучи с длиною волны короче 0,001 mm.

Можно сказать, что в природе существуют световые лучи со всевозможными длинами волн, начиная от бесконечно больших (практически) до бесконечно малых (также практически). Ничтожный участок видимых лучей (от 400 до 700 mm) тонет в этом многообразии.

У света есть и другие замечательные свойства, о которых мы пока не говорили. Сделаем такой опыт (фиг. 9,а). В стеклянный сосуд нальем слегка взмученную (например, каплей молока) воду и пустим в нее прямой солнечный луч. В такой взмученной воде след пучка света будет ясно виден вследствие рассеивания света частичками. На первый взгляд кажется само собой разумеющимся, что во все стороны свет должен рассеиваться одинаково, будем ли мы смотреть сверху на след пучка или сбоку. В случае прямого (обыкновенного) пучка солнечного света это действитбльно так.

Теперь сделаем второй опыт. Пустим прямой луч предварительно на стекло под углом примерно 54° (луч перпендикулярен плоскости чертежа), а потом в сосуд с взмученной водой (фиг. 9,б).
 

Фиг. 9. Поляризация света npи отражении

Внимательно осмотрев со всех сторон след светового пучка в сосуде, мы заметим поразительное явление: если смотреть сбоку, рассеяние света очень большое (сравнительно яркая светлая полоса), сверху же нет почти никакого рассеяния, следа пучка в воде не видно. Свет, отраженный от зеркала, получил новое, очень странное свойство: вверх и вниз он не действует, а действует только в стороны. В поперечном сечении пучка появляются преимущественные направления действия, возникает полярность.

Подобно тому как в палочном магните максимум действия идет по линии, соединяющей полюсы магнита, а в направлении, отвесном к этой линии действия почти нет, так и здесь наибольшее действие света сосредоточивается в горизонтальном направлении. Описываемое свойство света (но в более сложном случае так называемого двойного лучепреломления исландского шпата) было впервые названо Ньютоном, по аналогии с магнитом, поляризацией света. В обыкновенном пучке света присутствует смесь лучей, поляризованных во всевозможных направлениях; поэтому поляризация и не обнаруживается. При отражении от стекла преимущественно отражаются лучи с определенной поляризацией, поэтому последняя становится заметной. Свойством поляризации обладают не только видимые лучи, но вообще все лучи, которые мы называем световыми, начиная от радиолучей и до лучей гамма.

Глаз у большинства людей не отличает поляризованного света от неполяризованного. Но примерно 25-30% людей обладают этим свойством, хотя почти никогда об этом и не подозревают. При наблюдении поверхности, излучающей поляризованный свет, такие люди могут заметить в середине поля зрения полоску слабого желто-лимонного цвета, имеющую вид слегка изогнутого снопа колосьев. Если плоскость поляризации света поворачивается, то одновременно поворачивается и указанная полоска в глазу. При некоторых положениях Солнца свечение неба, возникающее вследствие рассеяния солнечных лучей в атмосфере, оказывается сильно поляризованным, и тогда человек, обладающий названной способностью, видит на фоне неба слабую желтую снопообразную полоску.

Примером тонкой наблюдательности великого художника могут служить строки из "Юности" Л.Н. Толстого, в которых он, по-видимому, совершенно не подозревая физического смысла явления, в 1855 г., в то время, когда и в науке оно было известно немногим (оно впервые описано в 1846 г. Гайдингером), с полной ясностью описал желтое поляризационное пятнышко на фоне неба *.

* См. заметку Б.И. Пилипчука "О юношеской наблюдательности Л.Н. Толстого". "Природа", 1945, № 2, стр. 92).
В XXXII главе "Юности" можно прочесть такие строки:
"...я невольно оставляю книгу и вглядываюсь в растворенную дверь балкона, в кудрявые висячие ветви высоких берез, на которых уже заходит вечерняя тень, и в чистое небо, на котором, как смотришь пристально, вдруг показывается как будто пыльное, желтоватое пятнышко * и снова исчезает..."

* Выделено С.И. Вавиловым. - Ред.

Очень рекомендуем читателю проверить свои глаза и постараться заметить желтую поляризационную полоску на небе. Таким образом можно убедиться, по крайней мере некоторым из читателей, что их глаза обладают свойством, о котором они ранее не знали. Наблюдение лучше производить в свете, отраженном от стекла, задняя поверхность которого зачернена. Под некоторым углом падения и отражения такая пластинка довольно значительно поляризует свет.

За последние десятилетия найдены способы массового изготовления сколь угодно больших прозрачных пленок, полностью поляризующих свет. Один из видов такого "поляроида" изготовляется на основе пластической массы - винилового алкоголя (правильнее - поливинилового спирта - V.V.). Тонкая пленка винилового алкоголя, натянутая в одном направлении, подвергается действию паров йода и после этого приобретает свойство полностью поляризовать свет. В настоящее время поляроиды широко применяются в лабораторной практике, в технике, в области фотографии. Если посмотреть на любую освещенную поверхность, на небо, на стену через поляроид, то всегда будет видна желтая сноповидная полоска, если только глаза наблюдателя обладают соответствующим свойством. При повороте поляроида полоска тоже вращается.

К физическому объяснению поляризации света мы скоро вернемся; сейчас же обратимся к другому замечательному свойству света.

Свет в однородной среде идет по прямым линиям, небольшая преграда на щ ти от источника света к глазу закрывает источник. На этом основании еще древние создали стройную науку - геометрическую оптику. Однако это не всегда верно.

Посмотрите на яркую светящуюся лампу, находящуюся от вас на расстоянии 20-40 м, через два пальца, довольно тесно прижатых друг к другу, так, чтобы между ними оставалась очень узкая щель. Через такую щель вы увидите вместо светящейся точки длинную полосу, поперечную щели. Эта полоса состоит из яркой точки в середине и из чередующихся боковых темных и радужных светлых полос - спектров. Ни о какой прямолинейности распространения света в таких условиях не может быть и речи. Это явление было, конечно, знакомо людям с доисторических времен; при всяком прищуривании глаз вследствие наличия ресниц обнаруживаются такие нарушения прямолинейности света, что известно, и особенно хорошо, детям. Однако впервые на это явление и его важность было указано только в XVII в. Гримальди.
 

Фиг. 10. Дифракция света при прохождении около непрозрачного предмета (опыт В.К. Аркадьева)

На фиг. 10 приведены, по опытам В.К. Аркадьева, пять фотографий тени руки, держащей тарелку. Первая фотография (слева) получена при таких условиях: расстояние от светящейся точки до руки а было около 2 м, расстояние b от руки до экрана, на котором получалась тень, около 1 м. На второй фотографии a+b выбиралось эквивалентным 2 км, на третьей - 7 км, на четвертой - 29 км, на пятой - 235 км. В то время как на первой  фотографии тень вполне отчетлива, на следующих она постепенно принимает крайне причудливый вид: в центре тени тарелки получается отчетливое светлое пятно, тень руки испещряется темными и светлыми полосами; о строгой прямолинейности света, стало быть, здесь не может быть и речи. По законам геометрии прямолинейные лучи от малого источника света на таком расстоянии должны были бы дать безукоризненно правильную тень.

Следовательно, проходя сквозь узкие щели и обходя малые предметы, свет огибает их. Гримальди назвал это явление дифракцией. Ньютон, по обычаю своему, тщательно исследовал явление и установил, что дифракция совершенно не зависит от того, из какого материала сделана щель или огибаемый предмет, и, следовательно, отвечает основному свойству самого света.

Впоследствии было доказано, что дифракция существует у всех лучей по всему спектру от радио- до лучей Рентгена. Чем меньше длина волны, тем уже должны быть отверстия и предметы, при помощи которых отклонения от прямолинейности и дифракция становятся заметными.

Мы просмотрели несколько важнейших свойств света, обнаруженных на опыте: периодичность, скорость, поляризацию, дифракцию. Все эти свойства, вместе взятые, явно подсказывают объединяющую мысль о свете как волновом потоке с поперечными колебаниями. Временно воздержимся, однако, от таких обобщений, отложив их до окончательного ознакомления со всеми основными свойствами света. Известны еще и другие свойства, о которых мы до сих пор ничего не говорили.

Свет всегда исходит от вещества, рождается в веществе и, поглощаясь, исчезает в веществе. Встреча света с веществом всегда сопровождается взаимодействиями. С одной стороны, вещество отражает, преломляет, поглощает свет, может поворачивать плоскость его поляризации. Действие вещества на свет начинается еще на расстоянии. Лучи звезд, проходя около Солнца на расстояниях в миллионы километров, заметно отклоняются, как бы притягиваются к Солнцу, и в результате звезды кажутся нам смещенными на небесном своде. С другой стороны, свет, встречая вещество, проявляет разнообразные действия. Свет давит на вещество, хотя это давление и крайне незначительно. Свет может производить химические изменения в веществе (фотографическая пластинка, лист растения, загар и пр.). Под действием света из вещества могут выбрасываться составные части атомов - электроны. При прохождении света вещество может начать светиться само (рассеяние света, флуоресценция, фосфоресценция). Наконец, свет, поглощаясь, нагревает вещество.

В самом начале нашего века М. Планк сделал многозначительное открытие. Оказалось, что свет может поглощаться и излучаться лишь вполне определенными порциями энергии, названными квантами.

Рассмотрим случай химического действия света. Положим, что перед нами окрашенная в тонком слое поверхность - бумага или ткань. Под действием солнечного света она постепенно выцветает. Краска состоит из мельчайших частиц - молекул, равномерно распределенных по ткани. Все молекулы одинаковы, на каждую падает как будто одинаковый свет, между тем ткань выцветает постепенно, т. е. сначала распадается одна молекула, потом другая. Если свет падает равномерно и молекулы одинаковы, следовало бы ожидать, что либо все молекулы разложатся сразу, либо ни одна не разложится, либо разложение произойдет сразу, взрывом, через некоторое время после того, как все молекулы поглотят достаточную энергию. На самом деле процесс идет очень медленно и постепенно. Как объяснить это? Остается предположить, что либо молекулы неодинаковы, либо фронт падающего света неравномерный: в одних точках энергия сосредоточена, в других энергии нет. Нет оснований сомневаться в тождестве молекул. За это говорит вся химическая практика. Мы приходим к выводу, что фронт якобы однородного светового пучка в действительности неоднороден. Его энергия сосредоточена в определенных центрах, пространственно отделенных друг от друга.

Изучая любые действия света, а не только химические, физики пришли к общему выводу: все действия света происходят так, как будто бы частицы вещества могли поглощать свет и излучать его только целыми квантами. Квант света был назван также фотоном.

Если освещение происходит однородным простым светом с частотой n раз в секунду, то величина кванта равна hn где h - всегда постоянная очень малая величина (6,62x10-27, т. е. 6,62, деленное на единицу с 27 нулями). С этой точки зрения постоянное выцветание ткани становится вполне понятным. Энергия светового потока не распределена повсюду равномерно и непрерывно, она сосредоточена в некоторых центрах - квантах. Разлагаются только те молекулы вещества, которые встретили летящие кванты света. В некоторых случаях можно рассуждать так. Если за определенное время веществом поглощена энергия Е, то количество разложившихся молекул получится делением этой энергии на энергию кванта

N = E / hn.

В простых случаях химического разложения под действием света это заключение хорошо подтверждается опытом. Прерывный, квантовый характер действия света проявляется всюду: при нагревании вещества, при электрических действиях света, при флуоресценции и т. д. Особенно замечательно, что при очень слабых световых потоках человеческий глаз также замечает прерывность световой энергии. К этому мы вернемся в последней главе книги.

Для лучей радио частота n относительно очень мала, поэтому и квант hn ничтожно мал; в этом случае крайне трудно уловить прерывный характер действий. Наоборот, для лучей Рентгена, имеющих очень большую частоту, квант велик, и здесь квантовые действия света особенно резки и отчетливы.

К нашему списку основных свойств света прибавилось, таким образом, новое важнейшее свойство, трудно совместимое с другими, ставшими ранее известными световыми признаками. Еще не исчерпав изложения всех известных до настоящего времени основных свойств света, перейдем, однако, к попыткам объяснения физической сущности света. Это несколько облегчает понимание и запоминание явлений.

Издавна рождались и умирали различные догадки о природе света. Многие из них были совершенно беспочвенными, так как судили, в сущности, неизвестно о чем: о явлении, свойстви которого были скрыты; смешивали зрение со светом; в результате возникали странные теории о зрительных лучах, о которых была речь во введении. Были, впрочем, и догадки, довольно близкие к теперешним теоретическим взглядам.

Свет несет от Солнца к Земле через огромные пространства энергию. Знали или, вернее, чувствовали это и древние.

Как можно передать энергию на расстояние? Способов не так много. Самое простое - перебросить энергию вместе с веществом с одного места на другое. Выстрел - это перенос разрушительной энергии пороха от стрелка к цели, энергия переносится летящей пулей. Можно переносить энергию с веществом непрерывным потоком, лавиной, но это, в сущности, одно и то же. И тут и там вещество странствует вместе с энергией. Но есть и другой способ. Морская волна, поднятая ветром, несется вдаль и, наконец, обрушиваясь, отдает свою энергию. Но если присмотреться к волнам, то легко заметить, что волна несется, а вода ею не увлекается, она только колышется на одном месте вверх и вниз. Энергия передается от слоя к слою без передвижения вещества. Точно так же распространяется энергия звука в воздухе. Звуковая волна - это не ветер, а последовательное колебание слоев воздуха.

"Если бы от струн, - рассуждает Ломоносов в своем "Слове о происхождении света", - так скоро двигался проходным течением воздух, как голос, т. е. больше тысячи футов в секунду, то бы от такой музыки и горы с мест своих сринуты были".

Для передачи энергии на расстояние волнами нужна промежуточная среда, в наших примерах - вода и воздух; в безвоздушном пространстве звук не распространяется. Иных способов передачи энергии мы не знаем. Значит, свет, несущий энергию от Солнца к Земле, должен быть либо потоком частиц, либо системой волн в некоторой среде, либо тем и другим сразу. Эти воззрения существовали в разных формах и у древних. Неизбежно воскресли они и в новой физике при попытках связать все разнообразные свойства единым образом.

Ньютон стремился пе смешивать домыслов с достоверностями, предположений с фактами, но в особо выделенных местах своих сочинений он много раз возвращался к вопросу о природе света, склоняясь к теории истечения. Главным его доводом против теории волн было отсутствие вещественной среды - "эфира" в мировом пространстве. В самом деле, планеты движутся совершенно регулярно, не встречая никакого заметного сопротивления или трения в окружающем их пространстве; следовательно, между планетами и Солнцем нет оснований предполагать наличие вещественной среды, которая необходима для распространения волн. Как в сосуде, из которого выкачан воздух, звук перестает существовать, так и механические колебания светил не могут превратиться в волны "пустого" мирового пространства. По Ньютону, более вероятно предположение, что свет - это поток мельчайших частиц вещества.

Периодичность, по Ньютону, можно объяснить, например, тем, что частицы вращаются. Пространство, пробегаемое такой частицей - корпускулой - за время ее одного оборота, и будет "длиной волны". Поляризацию Ньютон считал свойством только твердых частиц, видя в наличии ее у света доказательство того, что свет состоит из твердых корпускул. Огибание, дифракцию, Ньютон пытался истолковать отталкивательным и притягательным действиями вещества на свет.

Но в собственном экспериментальном наследстве Ньютона скрывалось тяжкое затруднение для его механической теории световых частиц. Вернемся к опыту с ньютоновыми кольцами (см. выше). Не приходится сомневаться в том, что эти кольца возникают в результате взаимодействия, встречи (интерференции) двух лучей, отразившихся от верхней и нижней границ, ограничивающих зазор между линзой и стеклом. Рассмотрим два таких луча (фиг. 11).

Фиг. 11 (слева). Прохождение лучей в опыте Ньютона с ннтерференционными кольцами

Фиг. 12 (справа). Колебания в неполяризованном и поляризованном свете

Луч 1 отражается от первой границы, создавая отраженный луч 1; луч 2, преломляясь на первой поверхности, отражается от второй и попадает снова в линзу. Такие встречающиеся, "интерферирующие", лучи и дают при своем взаимодействии постоянную картину ньютоновых колец. Представим себе теперь, по Ньютону, что лучи 1 и 2 - это пути световых частиц, беспорядочно вылетающих из источника света. Обе частицы совершенно независимы друг от друга. Если мы применим очень слабое освещение, то должны достигнуть, наконец, такого состояния, что вероятность одновременного прохождения частиц по пути 1 и 2 станет ничтожной. Если прав Ньютон, то в таком случае кольца должны исчезнуть: частицам не с чем взаимодействовать, интерферировать.

Между тем опыт с кольцами удается с тем же результатом при сколь угодно малых интенсивностях. Можно, например, выбрать такое слабое освещеяпе, что для фотографирования колец Ньютона потребуется несколько дней, и тем не менее кольца получаются такими же отчетливыми, как и при ярком освещении.

150 лет должны были пройти, прежде чем было показано, что опыты с кольцами и аналогичные интерференционные явления без всяких затруднений объясняются, если только допустить, что свет есть волновое движение. В самом деле, волна распространяется от светящейся точки во все стороны и при любой интенсивности на всех своих участках несет какую-то энергию, следовательно, лучи 1 и 2 всегда могут интерферировать. Кроме того, теория волн предсказывает вполне точно и результат интерференции: если разность хода двух лучей 1 и 2 при встрече такова, что впадина одной волны как раз приходится на гребень другой, то в этом месте волны как бы гасят одна другую, получается темное кольцо; наоборот, в соседнем участке, где сходятся гребни обеих волн, получается взаимное усиление, т. е. светлое кольцо.

С таким же успехом новая теория световых волн объяснила все тонкости дифракции, предсказывая факты всегда безупречно оправдывавшиеся на опыте. Поляризация света в теории волн также получила ясное толкование. Явление поляризации показывает, что световые волны поперечны, т. е. колебания совершаются отвесно к направлению луча, точно так же как в водяных волнах на поверхности пруда. В неполярязованных лучах колебания происходят в любых направлениях вокруг луча (фиг. 12), в поляризованных - только в одном направлении.

Волновая теория в первой половине XIX в. победила теорию истечения Ньютона безукоризненной качественной и количественной точностью своих предсказаний. Но насколько прочна была эта победа?

Вспомним, что для Ньютона главным доводом против теории волн было отсутствие механической среды - эфира - в межпланетном пространстве. Устранили ли этот довод Юнг и Френель? Нет, для них именно волновые свойства света казались доказательством бытия эфира. В течение всего XIX в. физики тщетно стремились найти прямые доказательства существования эфира. В особенности роковыми для эфира оказались опыты с распространением света в движущихся телах. Если существует неподвижная механическая среда, в которой распространяются световые волны, то, например, годичное движение Земли вокруг Солнца должно сопровождаться своего рода "эфирным ветром", влияющим на оптические явления. На опыте такого "ветра" не оказалось. Следовательно, либо эфира нет, либо он обладает совершенно особыми, не механическими свойствами.

Несмотря на это, волновая теория света получила поддержку, совсем неожиданную, в области электрических и магнитных явлений. На опыте было показано, что электрические и магнитные возмущения распространяются со скоростью света; при этом связь электрических и магнитных состояний такова, что в пространстве при некоторых условиях должны распространяться электромагнитные волны. Эти волны, предсказанные теоретически Максвеллом, были обнаружены на опыте Г. Герцем. А.С. Попов нашел впервые способ претворить электромагнитные волны в могучее средство для сигнализации на дальние расстояния и таким образом положил начало радио. П.Н. Лебедев и другие исследователи показали, что электромагнитые волны обладали всеми известными тогда признаками света - они отражались, преломлялись, поляризовались, обнаруживали дифракцию. Таким образом было открыто еще новое свойство света - он оказался электромагнитным явлением. Это объяснило взаимодействия света и вещества. Вещество, как мы хорошо знаем теперь, построено из электрически заряженных частиц, положительных ядер и отрицательных электронов, расположенных на периферии атомов. Всякое движение этих частиц должно порождать электромагнитные волны, т. е. свет. Наоборот, электромагнитные волны, падая на атомы и молекулы, раскачивают заряженные частицы, энергия волн рассеивается и поглощается.

Вернемся теперь к затруднениям с эфиром. В механической теории световых волн эфир совершенно обязателен; без среды, без эфира не может и существовать механических волн, так же как не может быть звука без воздуха или другой среды. Но с тех пор, как было доказано, что световые волны - электромагнитные, положение круто изменилось. Независимо от того, есть эфир или нет, мы знаем из прямых и хорошо известных опытов, что вокруг заряженных тел существует электрическое поле. Если заряд начинает двигаться, то, по законам электромагнетизма, в пространстве обязательно появятся электромагнитные волны. Они должны существовать, поскольку существует электрическое поле.

Позволительно, конечно, задать вопрос, а можно ли само электрическое поле объяснить без эфира? На это приходится ответить только одно: бесчисленные попытки, начиная с попыток самого Максвелла, вывести законы электричества и магнетизма на основе представления о механическом эфире оказались до сих пор тщетными.

Независимо от этого, как было отмечено, волновая теория света на электромагнитной основе к концу XIX в. была доказана, казалось, с несомненностью, а возражение Ньютона об отсутствии эфира потеряло значение, как только стало ясно, что световые волны не механические.

Волновая теория торжествовала, казалось, окончательную победу. В оптике все было "приведено в порядок". Но торжество оказалось очень кратковременным. Не прошло и пяти лет со времени открытия радио, как выяснились квантовые законы действий света (см. выше), непостижимые с волновой точки зрения. Как может энергия поглощаться целыми порциями, если она подводится непрерывными волнами? С тех пор прошло больше 60 лет, а недоумение осталось прежним; волновая теория не может ответить на этот вопрос и теперь.

Волновая теория беспомощна перед квантовыми законами действия света. Это неудобное положение таково, что снова приходится вспомнить Ломоносова, который по адресу теории истечения сказал: "Неудобность часто живет в соседстве с невозможностию".

С другой стороны, именно "невозможная" теория истечения снова получила шансы на признание. Для нее нет эфирных затруднений: световые корпускулы летят в пустоте, для них не нужен эфир. Квантовые законы также вполне согласуются с воззрением Ньютона. Молекулы поглощают свет целыми квантами, потому что к ним подлетает либо целая корпускула, либо ничего; поэтому при химических превращениях под действием света разлагаются не сразу все молекулы, а только те, на которые попал квант - корпускула.

Уменьшая яркость волн, мы уменьшаем их размах, напряженность, а ослабляя поток корпускул, мы оставляем действие каждой корпускулы прежним, уменьшая только число корпускул. Квантовые законы действий света в теории истечения значат только то. что свет распространяется целыми квантами - корпускулами.

Но в то же время воскресшая теория истечения по-прежнему не может объяснить интерференции, дифракции и других свойств света, где автоматически все затруднения разрешает теория волн.

Положение, создавшееся в оптике, было совершенно нетерпимым, и физик имел все основания повторять горестную фразу Ломоносова, приведенную в начале этой главы и сказанную именно по поводу теории света. Два различных воззрения па природу света властвовали каждое в своей области и оставались бессильными в соседней.

Проблеск разрешения трудности появился с неожиданной стороны. Вспомним, как мы пришли к выводу о возможности только двух представлений о свете. Мы основывались на привычных повседневных наблюдениях, показывающих, что механическая передача энергии происходит только двумя способами: посредством частиц или посредством волн. Мыслимо, конечно, сочетание того и другого, но этими возможностями и исчерпывается все, что удается "представить" и "понять".

Классическая механика, созданная, так же как и оптика, Ньютоном, есть математическое обобщение нашего привычного опыта, и выводы ее, в смысле возможных способов передачи энергии на расстояние, ничем не отличаются от наших простых заключений. Так называемая "классическая физика" характеризуется уверенностью, что в законах Ньютона найдена полная истина, сомневаться в которой невозможно. На основе этой уверенности возникло "механическое" естествознание, стремившееся объяснить все явления природы движением частиц, связанных некоторыми силами и подчиняющихся законам Ньютона.

Основой уверенности в непогрешимости этих законов была, во-первых, их понятность, полное соответствие нашим привычным, вненаучным представлениям, во-вторых, - огромный успех классической механики во всех областях естествознания и техники. Между тем эти доводы в пользу законов Ньютона далеко не безупречны. "Понятным" мы называем то, что соответствует нашим привычкам. Мы сравниваем, например, летящий атом с летящей пулей, объясняя или поясняя себе образ атома посредством более привычного образа пули. Но всякому ясно, что в действительности пуля безмерно сложнее атома, и наше "объяснение" сводит более простое к более сложному, но привычному.

"Понятность" тех или иных законов и явлений еще не залог их действительной простоты и достоверности. С другой стороны, человек исторически развивается, меняются его навыки, и бывшее ранее непонятным становится постепенно очевидным. Наши привычные представления во многом соответствуют действительному ходу явлении, и по мере развития человек все ближе подходит к посгижению истины, однако говорить о полном совпадении наших представлений с абсолютной истиной значило бы отрицать другую бесспорную истину о развитии человека. Уверенность в механистичности природы и в непреложное ги законов Ньютона покоится, в сущности, на очень зыбком фундаменте "привычки".

Кажущиеся непреодолимыми внутренние противоречия были обнаружены на переходе от XIX к XX в. не только в световых явлениях, но и в свойствах вещества. Масса тел оказалась зависящей от их скорости, потребовался пересмотр даже понятий о пространстве и времени. Нашлись физики и философы, заговорившие о "дематериализации" магерии, о том, что "материя исчезла - остались одни уравнения".

Но метафизический материализм, воплощением которого пытались представить "классическую физику", и порожденный им новый физический идеализм были преодолены мировоззрением диалектического материализма. Проникновенный анализ новой физики с точки зрения позиций диалектического материализма дал В.И. Ленин в гениальной книге "Материализм и эмпириокритицизм", появившейся в 1909 г.

Основные особенности диалектического метода изучения природы состоят в том, что природа рассматривается как связное, единое целое, находящееся в состоянии непрерывного движения и изменения.

В.И. Ленин в книге "Материализм и эмпириокритицизм" показал, что метафизическое, механистическое учение о материи должно быть заменено широким живым диалектическим понятием материи как объективной реальности. В это понятие материи не может не войти любое свойство природы с его противоречиями и сложностями, если оно действительно существует.

С этой точки зрения вскрытое в итоге развития оптики "непреодолимое" противоречие волновых и корпускулярных свойств в световых явлениях есть новое выражение диалектики природы, реального единства противоположностей. Упрощенные механические представления классической физики о непрерывных волнах и прерывных частицах, якобы исключающих друг друга, в действительных явлениях природы уживаются одновременно.

Это непривычное для нас противоречивое единство свидетельствует только о недостаточности и примитивности нашей механической картины.

Материя действительного мира бесконечно сложнее упрощенных метафизических образов, возникших у нас в силу привычки и длительного обыденного опыта.

Ход науки подтвердил справедливость этого. Успех классической механики, связанный с необычайным расцветом техники опыта, привел в конце концов к бессилию и беспомощности ее перед новыми фактами.

Существующий материальный мир - движущаяся материя - представляется нам в двух основных формах - как вещество и свет. Постепенно окрепло убеждение, что вещество во всем своем многообразии построено из отрицательно заряженных электронов, положительно заряженных протонов и нейтронов, не имеющих заряда. Вещество казалось поэтому более понятным, чем свет, в котором одновременно обнаруживались свойства и волн и частиц. В то время как неотделимое свойство света - его движение, и мысль о "неподвижном свете" кажется абсурдом, механическая физика вполне примирялась с "покоящимся веществом". Волна немыслима без движения. Если физик и говорит о "стоячих волнах", то он разумеет при этом результат сложения двух волн, бегущих навстречу одна другой. Наоборот, отдельно взятую частицу можно представить вполне неподвижной. Однако такая форма материи, лишенной движения, т.е. ее неотъемлемого свойства, - чистая абстракция с точки зрения диалектического мировоззрения. Она действительно оказалась таковой, как это показали новые, совсем неожиданные и удивительные опыты. В опытах, произведенных впервые около четверти века назад, было обнаружено, что поток электронов, протонов и молекул, встречая малые препятствия и отверстия, дает такие же отчетливые дифракционные явления, как и свет, т. е. обладает теми же основными свойствами волн.

На фиг. 13 приведен образец дифракционной картины, получающейся при прохождении электронов через очень тонкий слой серебра, состоящий из микроскопических кристалликов. Дифракция здесь не менее отчетлива, чем в случае света, и столь же убедительно свидетельствует о волновой природе электронов, т. е. вещества.

Фиг. 13. Дифракция электронов при прохождении через очень тонкий слой серебра

В настоящее время длина этих "волн вещества" измеряется с большой точностью и оказалась равной h/mv. Здесь h - та же постоянная величина, с которой мы уже встречались, когда говорили о свойствах света (см. выше), m - масса частицы и v - ее скорость.

Можно предполагать, что не только элементарные частицы - электроны, атомы и молекулы - соответствуют волнам; имеются основания утверждать, что любое отдельное скопление вещества, будет ли то человек, трамвай или Солнце, характеризуется подобающей его массе и скорости волной.

Во всей истории точного естествознания трудно указать другое открытие, которое было бы столь же непредвиденным и так же резко порывало бы с нашими привычными представлениями.

С механикой случилось то же, что и с оптикой. Древнее учение о свете считало пучок света снопом прямолинейно распространяющихся лучей, но явления дифракции заставили понять, что свет есть волновое движение, которое в отсутствие малых препятствий и отверстий на пути действительно ведет себя так же, как пучок лучей. За кажущейся лучевой геометрической оптикой скрывалась волновая оптика. Механика Ньютона была "лучевой механикой", но открытия нашего времени показали, что за ней скрывается более общая "волновая механика".

Не следует, впрочем, отождествлять "волны вещества" с волнами света. Мы видели, что световые волны имеют электромагнитную природу, чего нельзя сказать относительно волн вещества. Последние органически совпадают с самим веществом, с его частицами, в то время как световые волны излучаются, отдаются веществом и имеют совсем другие свойства.

Ошибочно думать также, что теория частиц сменилась более верной теорией волн. Существование частиц материи, атомов и электронов в веществе, квантов в световом потоке столь же достоверно, как и существование волн вещества и света. Были попытки представить материю как механическое сочетание частиц и волн, причем волны должны в этой схеме играть роль только рулевого или пилота, направляющего частицу туда, куда следует по законам распространения волн. На первый взгляд, возможно обратное механическое предположение, что волны вызываются частицами в эфире, подобно тому как корабль оставляет волны за кормой. Эти предположения, однако, в своих выводах полностью расходились с действительностью.

Весьма распространено мнение, что в опытах одного типа (например, в опыте с кольцами Ньютона) свет полностью ведет себя как волновое движение, а в опытах другого типа (например, выцветание окрашенной ткани) свет целиком проявляет себя как поток частиц. Это, однако, ошибочно.

Если опыт Ньютона производить с чрезвычайно слабым светом, то при некоторых условиях есть возможность наблюдать Статистические беспорядочные колебания яркости светлых колец, свидетельствующие о том, что энергия света и в этом типично волновом явлении сосредоточена в отдельных центрах фотона. С другой стороны, если освещать окрашенную ткань через узкие отверстия, то при выцветании обнаруживаются дифракционные явления.

Материя, т.е. вещество и свет, одновременно обладает свойствами волн и частиц, но в целом это не волны, и не частицы, и не смесь того и другого. Наши механические понятия не в состоянии полностью охватить реальность, для этого не хватает наглядных образов.

Формальная математическая теория света, хотя и не вполне совершенная, в настоящее время создана. Она охватывает почти весь круг известных явлений. Эта теория остается, однако, крайне отвлеченной и "непонятной" (в смысле отсутствия наглядных образов).

Теперь уместно вернуться к затруднению, с которым пришлось встретиться в начале этой главы. Читатель, вероятно, не забыл, что мы столкнулись с неясностями в самом определении предмета учения о свете. Прояснился ли этот вопрос теперь? Принципиально - да. Постепенно были установлены основные объективные свойства света, отличающие его от других видов материи. Но практическое применение различающих признаков, особенно в их совокупности, до сего времени иногда связано с трудностями.

В конце прошлого века физики довольно долго пребывали в нерешительности по поводу природы катодных лучей - вещество это или свет? Вопрос решен был экспериментальным доказательством существования отрицательного электрического заряда у катодных лучей. Световая природа лучей Рентгена также долгое время подвергалась сомнению. Только после обнаружения дифракции лучей Рентгена в 1913 г. физики окончательно согласились, что перед ними световое явление. Впрочем, строго говоря, этот вывод надлежало проверить, после того как дифракцию открыли у пучков заряженных частиц электронов и протонов, а также и незаряженных - нейтронов. В конце концов только совокупность различных явлений, ясно указывающих на электромагнитную природу лучей Рентгена, безукоризненно доказывает их световую природу.

В течение нескольких десятилетий исследователи радикально изменяли свое мнение о природе так называемых космических лучей, непрерывно приходящих на Землю со всех сторон из мирового пространства и обладающих огромной проникающей способностью. Два десятилетия назад считалось установленным, что космические лучи в основной своей части состоят из световых лучей с чрезвычайно малой длиной волны, более короткой в среднем, чем у гамма-лучей радия. Однако позднее было доказано, что космические лучи отклоняются магнитным полем Земли и, следовательно, состоят из электрически заряженных частиц. Сначала предполагалось в связи с этим, что первичные космические лучи состоят из электронов. Однако исследования последнего времени, в особенности опыты советских физиков, произведенные в верхних слоях атмосферы, с несомненностью доказали, что основная часть первичных космических лучей состоит из положительно заряженных протонов, Заметим, что космические лучи распространяются с громадной скоростью, практически совпадающей со скоростью света.

Приведенные примеры ясно показывают, насколько практически трудно в отдельных случаях с несомненностью установить световую природу того или иного явления.

Неисчерпаемость содержания реальной материи в различных ее проявлениях, вещества и света, раскрывается все больше по мере углубления научного исследования. Противопоставляя свет веществу, несмотря на многие сходные свойства у того и другого (свойства волн и частиц, квантовые закономерности), мы до сих пор считали свет и вещество по существу разнородными, отличающимися друг от друга примерно так же, как отличается звук скрипки от самой скрипки и радиоволны от радиопередатчика. Но около сорока пяти лет назад было сделано еще одно поразительное открытие в области учения о свете.

На основании своей формальной математической теории света, о которой мы только что упоминали, Дирак пришел к теоретическому выводу, что при некоторых условиях свет должен превращаться в вещество и обратно. В сильном электрическом поле атомного ядра световые кванты с длиной волны не более примерно 0,001 mm, по Дираку, могут распадаться на две противоположно заряженные частицы - электрон и позитрон. Это весьма удивительное теоретическое предсказание все же полностью подтвердилось на опыте. Превращение света в вещество было экспериментально доказано. На фиг. 14 мы видим фотографию этого поразительного процесса. Возможность такого рода фотографий основана на том, что быстрые заряженные частицы, проходя в воздухе, пересыщенном водяными парами, оставляют следы из осевших капелек воды. Противоположно заряженные частицы, электрон и позитрон, пролетают в сильном магнитном поле, вследствие чего загибаются в противоположные стороны.


Фиг. 14. Образование пары электрон-позитрон из светового гамма-кванта.
В магнитном поле налево (наверху) отклонен позитрон, направо - электрон
(Фотография Л.В. Грошева и И.М. Франка)

Перед нашими глазами, как это видно на фотографии, разыгрывается изумительное зрелище преобразования светового гамма-луча в пару легких частиц вещества. Происходит нечто, действительно, до известной степени напоминающее сказочное превращение мелодии в скрипку!

Для объяснения этого явления наука до сих пор не имеет ничего, кроме формальной и в этом смысле явно нас не удовлетворяющей теории Дирака. Во всяком случае с несомненностью обнаруживается глубочайшая связь света и вещества, о которой ранее не подозревали. Человек овладел природой еще с одной стороны.

Мы начали с субъективных зрительных ощущений цвета и яркости, а затем, шаг за шагом следуя за историей развития оптики, подошли к современному сложному состоянию объективной науки о свете. Читатель, вероятно, не удовлетворен концом повествования о судьбах развития воззрений на природу света. Загадка оказалась неразгаданной в обычном смысле слова и сделалась еще более сложной, чем казалось во времена Ньютона и Ломоносова. Но такова судьба всякой области настоящего знания. Чем ближе мы подходим к истине, тем больше обнаруживается ее сложность и тем яснее ее неисчерпаемость. Непрерывная победоносная война науки за истину, никогда не завершающаяся окончательной победой, имеет, однако, свое неоспоримое оправдание. На пути понимания природы света человек получил микроскопы, телескопы, дальномеры, радио, лучи Рентгена; это исследование помогло овладению энергией атомного ядра.

В поисках истины человек безгранично расширяет область своего владения природой. А не в этом ли подлинная задача науки? Мы уверены, что история исследования света, его природы и сущности далеко не закончена; несомненно, что впереди науку ждут новые открытия в этой области, что мы ближе подойдем к истине, а техника обогатится новыми средствами.
 


Введение 
Свет 
Солнце 
Глаз 
И.М. Франк, Послесловие



VIVOS VOCO! - ЗОВУ ЖИВЫХ!